Colorful background

References

*The results of preclinical studies may not be indicative of human clinical trials.

  1. Bassett, CA. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Crit Rev Biomed Eng. 1989; 17(5):451-529
  2. Yen-Patton GP, et al. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol. 1988 Jan; 134(1): 37-46
  3. Zoltan, JD. Electrical Stimulation of Bone: An Overview. Seminars in Orthopaedics, Vol 1, No 4 (December), 1986: 242-252
  4. PMA P850007. February 1986.
  5. PMA P850007/S6. February 1990.
  6. PMA P030034. December 2004.
  7. Patterson TE, Sakai Y, Grabiner MD, et al. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR-signaling pathway. Bioelectromagnetics. 2006;27(7):535-44
  8. Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res. 2007;25(9):1213-20
  9. Midura RJ, Ibiwoye MO, Powell, KA, et al. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res. 2005;23:1035-46
  10. Garland DE, Moses B, Salver W. Fracture healing: Long-term follow-up of fracture nonunions treated with PEMFs. Contemp Orthop. 1991;22(3):295-302. PubMed Abstract
  11. Simmons JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: non-operative salvage with pulsed electromagnetic fields. American Journal of Orthopedics, 2004 Jan;33(1):27-30. PubMed Abstract
  12. Mooney V. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields of interbody lumbar fusions. Spine. 1990 July;15(7):708-12. PubMed Abstract
  13. Foley K, et al. Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. The Spine Journal. 2008 May/June;8:436-442. PubMed Abstract
  14. Zborowski M, Androjna C, Waldorff El, Midura RJ 2015 Comparison of therapeutic magnetic stimulation with electric stimulation of spinal column vertebrae. IEEE Transactions on Magnetics 51(12): #5001009, doi: 10.1109/TMAG.2015.2458297
  15. Schnoke M, Midura RJ. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res. 2007;25(7):933-40
  16. Ibiwoye MO, Powell KA, Grabiner MD. Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. J Orthop Res. 2004;22(5):1086-93
  17. Orthofix patient registry. PMA P850007/S20. Data on file.
  18. Data on file. Field mapping analysis conducted by M. Zborowski, Ph.D., Cleveland Clinic.
  19. iData Research Inc., U.S. Market for Spinal Implants and VCF (iDATA_USSP19_RPT), iData Research Inc (www.idataresearch.net) 2019
  20. spine.org/PolicyPractice/CoverageRecommendations/AboutCoverageRecommendations.aspx
  21. Navarro, M., Michiardi, A., Castano, O., & Planell, J.. (2008). Biomaterials in orthopaedics. Journal of the Royal Society Interface, 5(27), 1137-1158.
  22. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16(4):671-80.
  23. Bioventus LLC, Exogen ultrasound signal depth and penetration. Data on file, RPT-000368
  24. Lehmann JF, Brunne GD, Martinis AJ, McMillan JA. Ultrasonic effects as demonstrated in live pigs with surgical metallic implants. Arch Phys Med Rehabil. 1959 Nov; 40:483-8
  25. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res: official publication of the Orthopaedic Research Society. 1999;17 (4): 488e494. https://doi.org/10.1002/jor.1100170405. PubMed PMID: 10459753
  26. Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 2005; 31(5): 703e708. https://doi.org/10.1016/j.ultrasmedbio.2005.01.013. PubMed PMID: 15866420
  27. Shimizu, T., Fujita, N., Tsuji-Tamura, K. et al. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Sci Rep 11, 10298 (2021). https://doi.org/10.1038/s41598-021-89672-9
  28. Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review. Ann Biomed Eng. 2008; 36(12): 1978e1991. https://doi.org/10.1007/s10439-008-9577-x. PubMed PMID: 18855142
  29. Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low intensity pulsed ultra-sound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res. 2004;(418):253e259. PubMed PMID: 15043127
  30. K.S. Leung, W.H. Cheung, C. Zhang, K.M. Lee, H.K. Lo. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin. Orthop. Relat. Res., 418 (2004), pp. 253-259
  31. T. Hasegawa, M. Miwa, Y. Sakai, T. Niikura, M. Kurosaka, T. Komori. Osteogenic activity of human fracture haematoma-derived progenitor cells is stimulated by low-intensity pulsed ultrasound in vitro. J. Bone Joint Surg. Br., 91 (2) (2009), pp. 264-270
  32. Wu, L.; Lin, L.; Qin, Y.-X. Enhancement of Cell Ingrowth, Proliferation, and Early Differentiation in a Three-Dimensional Silicon Carbide Scaffold Using Low-Intensity Pulsed Ultrasound. Tissue Eng. Part A 2015, 21, 53–61.
  33. Cao, H.; Feng, L.; Wu, Z.; Hou, W.; Li, S.; Hao, Y.; Wu, L. Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study. Mater. Sci. Eng. C
  34. Wang, Y.; Peng, W.; Liu, X.; Zhu, M.; Sun, T.; Peng, Q.; Zeng, Y.; Feng, B.; Zhi, W.; Weng, J.; et al. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater. 2014, 10, 2518–2528.
  35. McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. Micromachines. 2021; 12(12):1488. https://doi.org/10.3390/mi12121488
  36. Yang, K. H. et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J. Orthop. Res.14, 802–809 (1996).
  37. Hadjiargyrou, M., McLeod, K., Ryaby, J. P. & Rubin, C. Enhancement of fracture healing by low intensity ultrasound. Clin. Orthop. Relat. Res.355S, S216–S229 (1998)
  38. Nolte PA, van der Krans A, Patka P, Janssen IMC, Ryaby JP, Albers GHR. Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma. 2001;51(4):693-703.
  39. Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. J Bone Joint Surg. 1997;79- A(7):961-973.
  40. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg. 1994;76- A(1):26-34.
  41. PMA No: P210035