
HOW LIPUS WORKS
Low-Intensity Pulsed Ultrasound



The information contained within this brochure is provided for informational and educational 
purposes only and does not constitute medical advice. Please consult a qualified medical  
provider for diagnosis and treatment. Orthofix is not responsible for misinterpretation of the 
information provided or any consequences resulting from the use of this brochure.

Please visit www.Orthofix.com/IFU for full information on indications for use, contraindications, 
warnings, precautions, adverse reactions information, and sterilization.
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How LIPUS Affects Fracture Healing
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The fracture repair process is divided into four stages: inflammation, soft callus formation, hard 
callus formation, and bone remodeling.1 Low-intensity pulsed ultrasound treatment (LIPUS) has 
been shown to accelerate fracture healing at every stage, with maximum benefit achieved when 
applied throughout the entire healing process.1

The Orthofix AccelStim™ device uses a low-intensity pulsed ultrasound mechanical pressure 
wave composed of 1000 pulses per second to stimulate a response at the cellular level.2, 3 After 
contacting bone, the mechanical pressure wave creates nanomotion at the fracture site producing 
a reaction at the cellular level.2, 3 

The Orthofix AccelStim device helps promote bone healing by providing non-invasive therapy for 
healing nonunion fractures and accelerating the time to healing of fresh fractures.4

The Orthofix AccelStim device uses a unique LIPUS signal to amplify your body’s natural bone  
repair processes.4
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LIPUS Amplifies Bone Healing
LIPUS works by sending ultrasound waves through the skin and surrounding soft tissue to reach 
the site of the bone fracture.5, 6 This stimulates signaling pathways,7 which in turn promotes 
mesenchymal stem cells to migrate towards the site of the fracture.8 The ultrasound waves 
activate certain cell receptors,9 setting off a series of reactions, referred to as a cascade.  
One result of this event is that stem cells begin to proliferate, differentiate, and mineralize to 
form new bone.8, 10 LIPUS increases upregulation of the processes critical to bone repair, thus 
increasing new bone formation.5,11

The Orthofix AccelStim device helps promote bone healing by providing 
noninvasive LIPUS therapy for healing nonunions and accelerating time 

to healing of indicated fresh fractures.4

Molecular: 
LIPUS stimulates signaling 
pathways, leading to increased 
cell differentiation.1,12 

Cellular: 
LIPUS stimulates bone cells 
to proliferate, differentiate, 
and mineralize.18

Tissue: 
LIPUS increases new bone formation.25



LIPUS at the Molecular Level
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• LIPUS stimulates the expression of aggrecan in chondrocytes,12,13 leading to accelerated 
cartilage formation, which is part of the initial phase of the fracture healing process.1

          - LIPUS increases aggrecan expression 10-20% as shown by immunohistochemical  
          staining of chick embryos.13

• LIPUS stimulates integrin, a transmembrane cell receptor, leading to increased gene expression 
of osteogenic growth factors and markers of osteogenesis.7,14  These include osteonectin, 
osteopontin, and insulin growth factor-1 (IGF-1).15

          - Staining by immunofluorescence showed a significant increase in integrin after  
          15 minutes of LIPUS exposure in rabbit synovial cells.7

• LIPUS stimulation alters the gene expression profile in osteocytes thus modifying the function 
of osteogenic and inflammatory cells that are involved in the fracture healing process.16,17

          - LIPUS stimulates an anabolic response in osteocytes.17

LIPUS stimulates signaling pathways, 
leading to increased cell differentiation.



LIPUS at the Cellular Level
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• LIPUS stimulates undifferentiated mesenchymal stem cells to differentiate into osteoblasts. 8,18.

          - After 13 days of differentiation, mesenchymal stem cells treated with LIPUS were  
         10% more differentiated than the control group.19

• In response to LIPUS, periosteal cells and osteoblastic cells increase expression of osteocalcin, 
alkaline phosphatase, and Vascular Endothelial Growth Factor (VEGF). These result in an 
increase in mineralization and enhanced angiogenesis.20,21

          - Periosteal cell showed significantly more mineralization after four days of LIPUS treatment 
         when compared to the control group.20

• Enhanced stimulation of osteogenic cells by LIPUS drive endochondral ossification.10,20

          - LIPUS treatment for 16 days accelerated endochondral ossification in mice, shown  
         by histology.22

LIPUS stimulates bone cells to 
proliferate, differentiate, and mineralize.



LIPUS at the Cellular Level LIPUS at the Tissue Level

• LIPUS increases mineralization and calcium deposition.23,24

          - The volume and amount of new bone formation was greater in the LIPUS group than  
         the control, shown by micro-CT.24

• LIPUS enhances bone formation.25,26

          - Bone formation in the LIPUS treated group started earlier and became more  
         extensive than bone formation in the control group.26

• LIPUS improves osteogenic differentiation, mineralization, volume of newly formed bone,  
and osseointegration.11,27

          - The LIPUS treated group showed 86% spinal fusion in a rabbit model, compared  
          to 14% in the control group.27

• LIPUS accelerates all stages of the fracture repair process (inflammation, bone formation, and 
bone remodeling), by increasing mineralization and reducing the inflammatory response.1,22

          - Early endochondral ossification in the LIPUS treated femur was greater than in the 
          control, shown by histology and micro-CT, confirming a significant increase in  

newly formed bone.1, 22
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LIPUS increases new bone formation.



Four Phases of Bone Healing

Phase 1: Inflammation

Phase 2: Formation of Soft Callus
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• When a bone breaks, blood vessels in the bone and 
periosteum are torn and hemorrhage, and a hematoma (blood 
clot) forms at the fracture site.

• Blood comes from blood vessels, marrow, and surrounding 
tissues, forming a hematoma that aids in cell recruitment to 
the fracture site.5

LIPUS Benefit

• LIPUS stimulates ultrasound waves through skin and 
surrounding soft tissue to reach the site of the bone 
fracture.20,28

• LIPUS activates anti-inflammatory response by upregulating 
the anti-inflammatory gene expression.20,28

• New blood vessel formation occurs, which is called 
angiogenesis.5

• The major growth factor responsible for angiogenesis is VEGF. 
VEGF is produced by osteoblasts and periosteal cells.5

• Proliferation and osteoblastic differentiation of mesenchymal 
stem cells takes place to form the soft callus.5

LIPUS Benefit

• LIPUS helps to increase the formation of new blood vessels at 
the fracture site.29

• LIPUS treatment enhances the TGFB-triggered differentiation 
of chondrocytes in culture and accelerates the formation of 
extracellular matrix.30



Phase 3: Formation of Hard Callus

Phase 4: Bone Remodeling

• Mineralized callus is the outer layer of bone tissue that normally 
forms like scar tissue at the ends of a broken bone once it has 
healed.33

• Eventually, the fracture callus is remodeled into a new shape 
which closely duplicates the bone’s original shape and strength.33

LIPUS Benefit

• LIPUS accelerates both the normal formation (remodeling) and 
recycling (resorption) of bone tissue, for a faster formation of  
the mineralized callus.33
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• Calcium is deposited in the new bone structure in a process 
called ossification. The hard callus continues to grow, bridging 
the gap in the broken bone until the two ends meet.31,32

LIPUS Benefit

• LIPUS treatment increases soft tissue mineralization 
to stabilize the fracture by adding a rigid structure and 
strength.31,32

• LIPUS activates anti-inflammatory response by upregulating 
the anti-inflammatory gene expression.20,2.



Clinical studies have validated the safety and effectiveness of LIPUS:

Clinical studies on LIPUS have successfully shown to resolve 86% of non-union fractures and this 
treatment induced a 38% acceleration in achieving clinical and radiographic healing.9,34-37

Studies show the safety and effectiveness of the LIPUS for non-invasive treatment of established 
nonunions, fresh, closed, posteriorly displaced distal radius fractures and fresh, closed or Grade I 
open tibial diaphysis fractures.34-38 Treatment with LIPUS accelerated healing by 38% (96 days for 
LIPUS treated versus 154 days for control group).34

Faster healing in both cortical and cancellous bone

Fracture Healing
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LIPUS has been proven to be a safe and effective noninvasive treatment 
to improve overall nonunion fracture healing success rates and  

to accelerate the healing of indicated fresh fractures. 34-36

37
DAYS
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ACTIVE GROUP

61 DAYS TO HEAL
PLACEBO GROUP
98 DAYS TO HEAL
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58
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154 DAYS TO HEAL

Tibial Diaphysis Fracture
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Brief Prescribing Information: 
The AccelStim device is indicated for the non-invasive treatment of established nonunions 
excluding skull and vertebra, and for accelerating the time to a healed fracture for fresh, closed, 
posteriorly displaced distal radius fractures and fresh, closed or Grade I open tibial diaphysis 
fractures in skeletally mature adult individuals when these fractures are orthopedically managed 
by closed reduction and cast immobilization. A nonunion is considered to be established when 
the fracture site shows no visibly progressive signs of healing. 
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